

IoT connectivity made easier STM32 MCUs & LoRa®

Summary 2

- 1. What is IoT?
- 2. Communication technologies Overview
- 3. LPWAN
- 4. LoRa® and LoRa Alliance
- 5. LoRa[®] technology modulation and LoRaWAN™ network protocol
- 6. STM32 boosting LoRa® (Roadmap, demos, competition, and schedule)

What is IoT?

While M2M networks connect machines in closed systems, IoT enhances the exiting networks through an intelligent cloud.

IoT use cases 4

Consumer

IoT - Driving the next semiconductor growth 5

45 billion connected devices are expected by 2020

Communication Technologies - Overview

ISM worldwide regulation _____

Output Power vs Duty Cycle

Countries	Frequency band review	Max. output power	
EU	868 MHz	14 dBm	
USA	915 MHz	20 dBm	
Korea	900 MHz	14 dBm	
Japan	920 MHz		
Malaysia	862 to 875 MHz	20 dBm	
Philippines	868 MHz		
Vietnam	920 to 925 MHz		
India	865 to 867 MHz		
Singapore	922 MHz		
Thailand	920 to 925 MHz		
Indonesia	922 MHz		
ANZ	915 to 928 MHz		
Taiwan	920 to 925 MHz		
China	470 to 510 MHz	17 dBm	

Sub-GHz and loT 8

The 2 solutions to address the IoT over LPWAN

- Sub-GHz is a fragmented segment with many dedicated protocols and solutions to address different needs
- An initiative of standardization is on-going with LTE, LoRa®, Sigfox ...
- Standardization will be an enabler for industrial applications (meters), Smart Cities

What is LoRa®?

- 1. A Sub-GHz wireless technology enabling low data rate communication over long distances
- 2. Targeting M2M and Internet of Things, IoT applications
- 3. LoRa® technology provides a WAN capability, using a MAC protocol named LoRaWAN

Long range

- Greater than cellular
- Deep indoor coverage
- Star topology

True location

- Indoor and outdoor
- Accurate

Max lifetime

- Low power optimized
- 10- to 20-year lifetime
- >10x vs cellular M2M

Bidirectional

- Bidirectional
- Scalable capacity
- Broadcast

Multi-usage

- High capacity
- Multi-tenant
- Public network

Global mobility

- True mobility
- Seamless
- Roaming

Low cost

- Minimal infrastructure
- Low-cost end-node
- Open software

Security

- Unique ID
- Application
- Network

ST and the Alliance

The Internet of Things era is now

The LoRa® Alliance is an open, non-profit association of members. Its mission is to ensure that LoRaWAN™ is THE open global standard for SECURE, CARRIER-GRADE IoT LPWAN connectivity. Visit www.lora-alliance.org

The LoRa® Alliance

The LoRa® Network Deployment 12

LoRa® technology modulation 13

- LoRa® technology is based on the Spread Spectrum Technology
- It is a Chirped Frequency Modulation

Source: Semtech

LoRaWAN[™] device classes 14

3 classes to cover all use cases

Class name	Intended usage	
A ("all")	Battery powered sensors (or actuators with no latency constraint) Most energy efficient communication class. Must be supported by all devices.	Mainly uplink with two potential downlink slots after each uplink
B ("beacon")	Battery powered actuators Energy efficient communication class for latency controlled downlink. Based on slotted communication synchronized with a network beacon.	Programmed downlink slots to allow control within certain latency limits
C ("continuous")	Main powered actuators Devices witch can afford to listen continuously. No latency for downlink communication.	Lowest latency command and control for less power critical devices

LoRaWANTM device classes 15

Class A – bidirectional communication

Uplink Received by multiple gateways

For every uplink, there are two possible downlink slots. Downlink is possible only at these times.

Time

NETWORK

Network Server selects:

- Gateway for downlink
- Which downlink slot to use

End Devices transmit at any time (ALOHA)

Programmed wait 1

Rx slot

Programmed wait 2

Rx slot

END DEVICES

Source: Semtech

LoRaWANTM device classes 16

Class B - Bidirectional Communication

END DEVICES

Pre-programmed RX slots synchronized by gateway beacons

Source: Semtech

LoRa® network protocol 17

Network topology overview

Long-range Sub-GHz LoRa®

3G / 4G / Ethernet (IP)

Ethernet (IP)

LoRa® network protocol 18

Solution providers

LoRaWANTM - Security

A native 128-bit AES security network protocol

- Device Address (DevAddr) is a 32-bit identifier
 - Unique within the network
 - Available in each data frame and shared between end-device, N.S and A.S
- Network Session Key (NwkSKey) is a 128-bit AES encryption key
 - Unique per end-device and shared between end-device and N.S
 - It allows message integrity communication between end-device and N.S
- Application Session Key (AppSKey) is a 128-bit AES encryption key
 - Unique per end-device and shared between end-device and A.S
 - It is used to encrypt / decrypt A.S server messages to the end-device
- To increase end-device authentication and security, a secure element can be added to the device

ST and Semtech LoRa® Agreement 20

- Semtech Corporation and STMicroelectronics announce an agreement on Semtech's Lora® long-range wireless RF technology
- Intended to boost STM32 MCUs with LoRa® technology to target internet of things deployments by mobile network operators and large-scale private networks
 - > ST and Semtech partnership press release

LoRa® powered by STM32TM

www.st.com/stm32-lrwan

USI® Module AT command

Murata® Module All-in-one Open

Cost-optimized solution

Flexible design architecture
More than **1000 STM8/STM32 part numbers**

All-in-one LPWAN

Open Murata® LoRa® module

Powered by STM32L0

USI® LoRa® module - AT command set

Powered by STM32L0

Let's get started 24

With a wide and existing ecosystem

(Click on the icon or link)

Hardware tools

Expansion board

ST and USI® P/N: I-NUCLEO-LRWAN1

Nucleo pack ST and Semtech P/N: P-NUCLEO-LRWAN1

Discovery kit

ST and Murata® P/N: B-L072Z-LRWAN1

STM32CubeMX

ST-Link Utility

Partners IDE

System Workbench for STM32

LoRaWANTM stack

New hardware too 25

B-L072Z-LRWAN1: Murata® STM32™ and LoRa® Discovery kit

New hardware too 26

I-NUCEO-LRWAN1: USI® STM32™ Nucleo expansion board for LoRa®

Available in February 2017

Release your creativity with the STM32

