AVNET

What is mbed Device Connector?

Server application that connects loT devices with the web applications and services

ARMmbed

mbed
Device Connector

Little Data

End-to-End Security, Web, Data Objects & Management

loT Service or App

BIG DATA

NAVNET siLica

- mbed Device Connector is a service that lets you to provision and connect Internet of Things
(IoT) devices to the cloud

- This service provides:
- Secure end to end communication with the client SSL/TLS
- Access to the resources shared from the client by web API

mbed Client mbed webApp
connector

ARM'
mbed

Lenabled

.
CoAP HTTP/REST []
.

GET GET \ n
PUT PUT
POST POST

DELETE DELETE

NAVNET siLica

mbed Desktop Tools

ARM mbed Desktop Tools

—mbed CLI

— Common interface across multiple compilers

— Focused on ease of use, reproducibility C:\>mbed
— Open source project : hitps://github.com/ARMmbed/mbed-cli -\=mbe

— Read the guide: hitps:/github.com/ARMmbed/mbed-
cli/blob/master/README.md

— Greentea
— mbed OS test framework
— Easy to execute tests on mbed Enabled devices

https://github.com/ARMmbed/mbed-cli
https://github.com/ARMmbed/mbed-cli/blob/master/README.md

— Command-line tool (Windows, Mac and Linux)

)) i Invoked using “mbed” command
— Create or import applications

—Add/remove/update libraries C:\>mbed compile
—Build apps & libraries (B:‘:)':;fe!’;:’f:tcgbed
—Launch automated tests Link: mbed_blinky

— Generate IDE projects

—Publish code directly to mbed.org, github, others o
— No separate registry. Simplified dependency model. gfggg’gﬁ(;’vmgbgds%%

— programs

https://github.com/ARMmbed/mbed-cli

mbed OS
RTOS

Priorities

« -3..0..43

» osPeriorityldle ... osPriorityRealtime
Stack

« Dynamic allocation or user provided
Signals

« Thread::signal_set(int32_t)

» Thread::signal_clear(int32_t)

Delay

» signal_wait(), wait(), yeild()

Thread (osPriority priority = osPriorityNormal,
uint32_t stack_size = DEFAULT_STACK_SIZE,
xstack_pointer =)

Thread t;
DigitalOut led1(LED1);

blink(DigitalOut xled)

(1) {
xled = !xled;
wait(1.0f);

main()

t.start(callback(&blink, &ledl));
L

NAVNET

Mutex stdio_mutex;

d notify(const char *name, int state)

stdio_mutex. lock();
printf("%s: %d\n", name, state);

« Synchronize access to shared resources stdio_mutex.unlock();
« Mutex cannot be used from interrupt
context! i test_thread(void const *args)

e (1) {

notify((const charx)args, 0);
wait(1.0f);

notify((const charx)args, 1);
wait(1.0f);

* Mutex default timeout is osWaitForever

« Semaphore default timeout is osWaitForever

main()

Thread t2, t3;

t2.start(callback(&test_thread, (void *)"t2"));
t3.start(callback(&test_thread, (void *)"t3"));

test_thread((void *)"t1");

NAVNET

Queue is used for storing pointers to data

MemoryPool is used for data storage

Queue::put(T *)
Queue:.get(osWaitForever)

MemoryPool::alloc() / calloc()
MemoryPool::free()

Mail

Managed Queue and MemoryPool

{
voltage;
current;

} mail_t;

Mail<mail_t, 16> mail_box;
measure ()

_ti=
()
i++;
mail_t *mail = mail_box.alloc();
mail->voltage = (i * 0.1f) x 33;
mail->current = (i * 0.1f) * 11;
mail_box.put(mail);
wait(1.ef);

0;
{

main ()

Thread t1;
tl.start(callback(&measure));

() {
osEvent evt = mail_box.get();
(evt.status == osEventMail) {
mail_t xmail = (mail_tx)evt.value.p;
printf("Vo 5.2f V\n", mail->voltage);
printf("Cu f A\n", mail->current);
mail_box.free(mail);

NAVNET

mbed OS
events

Flexible function pointer
* Object and member function

S parameters
« C functions

Any combination of return types and up to

blink(

DigitalOut led(LED1);
led = !led;

}
Callback< ()> func(&blink);

main()

(1) {
func.call();
wait(0.1f);

NAVNET

— Storage for many events
— Events in an EventQueue are not pre-
emptive
— The queue is elastic until it runs out of
memory though (plays catchup)
— RTOS aware — can have multiple queues at
different priorities

EventQueue queue(32 * EVENTS_EVENT_SIZE);
Thread t;

main()

t.start(callback(&queue, &EventQueue::dispatch_forever));

NAVNET

A Callback that is attached to an EventQueue

Has attributes such as

Event:.delay(int) — ms before dispatch
Event::period(int) — dispatch repetedly

blink()

DigitalOut led1(LED1);
ledl = !ledl;
}

EventQueue queue;
Event<

()> event(&queue, callback(&blink));

main()

event.period(100);
event.post();
(1) {
queue.dispatch();

NAVNET

Protocols and
Standards

Architecture — 2 distinct domains

In Scope

of the
wmm <
Technical

Spedfication

LWM2M

Service

[y ————

RESTHul APl over
HTTP/HTTPS

WM2M
Protocol

LWM2M

Device

Device-to-Cloud
Pattern

pe=—————

\
%
Outside the Scope
of the IWMIM
Technical Spedfication

Application
Server

Back-End Data-Sharing Pattern

NAVNET siLica

LWM2M version 1.0 architecture

04.07.2017

laT
Service

LWRZ2M
Bootstrap
Server

LWM2M
Server

LWM2M over
UDFP or 5M5
Protected by DTLS

loT

LWM2M Device
Client

I

Sensor

1 1
|_ Config I_Actuatnr

Figure |: Entities in the [WM2M Architecture.

LWM2M Objects
LWM2M Protocol

CoAP
DTLS

UDP

SMS

Figure 2: Protocol Stack

NAVNET

SSSSSS

®®

Qo
LWMP MW @

— LWM2M is a Device Management protocol optimized for 10T devices
— Manage loT devices remotely, provision security credentials, and update over-the-air
— Standard protocols is the key in preventing vendor lock-in
— Vendor lock-in -a customer dependent on a vendor for products and services, unable to
use another vendor without substantial switching costs
— ARM is an active member in the OMA standard body activities
— ARM client and server implementation are standard compliant
— ARM participate in the on-going Test Fests computability activities

0]

04.07.2017 NAVNET 18

Generic information for LWM2M

— Hierarcial data structure
— {object ID}/{object instance

Account

ID}{Resource ID}/{Resource instance

D) @
— Resource instance level can be also

omitted if not needed, which is the et Temperature (3303)

most common case

— {object ID}/{object instance ID} Objectnstance
/{Resource ID} _’

— In’human” —what is it / which instance " _ GET Endpoint]/3303/0/5602
of these? / what is the value of it e —

— 3303/0/5602

— In"human”:temp sensor / 1st instance

/ max observed value
NAVNETsica 19

Example: IPSO Temperature object (/3333/0/5xxX)

Resource ID Operations Type Description

Sensor value 5700 R Float Last or current measured value from the sensor

Min measured value 5601 R Float The minimum value measured by the sensor since
power ON or reset

Max measured value 5602 R Float The maximum value measured by the sensor since
power ON or reset

Min range value 5603 R Float The minimum value that can be measured by the
sensor

Max range value 5604 R Float The maximum value that can be measured by the
sensor

Sensor units 5701 R String Measurement units definition

Reset min and max 5605 E String Reset the min and max measured values to current

measured values

value

|

== Data

Metadata

—

} Actions

NAVNET siLica

Supported operations (LWM2M RESTful API)

High-level message pattern hiding details of

networkin r | - .
et O . g .p o.toco S LWFI‘E rln Fh::glﬁ.{'_‘:l. UF’d-ﬂt‘E-'. Dﬁ"cg'ﬁtﬂr- LWMEM
— Registration interface Client Senver
— Informs server about “existence” and

supported functionalities (‘'m here, alive for30 — I
seconds, have temp sensor”)
. : Read, Write, Execute,
~ Device management & service enablement . " Create, Delote .
interface Client Servar
— Ability to access object instances and
resources
— Information reporting interface
. P .g . . . Observe, Cancel Observation
— Subscribe/publish interaction for observing LIWMEN e
changes in resources Client Notify g e
" T

NAVNET siLica

Hands-On

Our project

— Our project will connect the Sensor Board to the mbed Device Connector via a MESH network
— Initially we’ll send a counter to mbed Device Connector and will be able to access to the value

from a web browser
— In the next step we will modify the sources in order to send the temperature value coming
from the ST HTS221 sensor

mbed

mbed Client webApp
connector
-

ARM .

mbed CoAP HTTP/REST []

enabled °

= N
GET GET ‘~ .

PUT PUT
POST POST

DELETE DELETE

NAVNET siLica

Network Topology

— The Sensor Node is a node of a MESH network
— Part of the network is an edge router which is connected to the cloud
— The connection from the Sensor Node to the EDGE Router (ST board NUCLEO F429Zl) is
6LOWPAN sub-ghz wireless
— The EDGE Router is connected on internet via Ethernet cable
— The user can browse the mbed Device Connector website to access to the data of the nodes
Node

K a
=
' =0

NAVNET siLica

In the first part of the demo we will use the CLI (Command Line Interface)

— Open the Bash console in the folder where you want download the project
— Press the right mouse button and select Git Bash Here

Git GUT Here
Git Bash Here

— Unzip the project from the mbed-os-sensor-node.zip file

=y Gestione dispositivi

— It will require few minutes, meanwhile start to setup c. ssone Vicuslizza 2

your PC: e @0 HD @ %S
— Connect the board to the PC 3 mbedpC
— Install manually the drivers provided from a-[lp Attri dispositivi
the STSW-LINKOO9 zip file B E;PLT::'SESW“M'UW
— Driver for ST-Link v2 (ST-Link Debug) ;5; Batterie Aggiomamento software driver..

— Driver for Virtual Com Port (unknown device)

NAVNET

Setup the MAC address for the 6LoWPAN:
— in the root directory of the project open the setting project file: mbed_app.json
— you have to modify the “spirit1.mac-address” parameter. For the last three bytes
substitute them with your birth date (this is to sure you have a unique MAC for the
board in the demo network)

For example:
"spiritl.mac-address": "{0x7, 0x6, 0x5, 0x4, 0x3, MONTH, DAY, YEAR}"

with “Feb/16/1980” will be:
"spiritl.mac-address": "{0x7, 0x6, 0x5, 0x4, 0x3, 0x02, 0x16, 0x80}"

NAVNET

Download from the ARM side the device certificate
— Login into your mbed Device Connector page

— Go to mbed Device Connector at the Security Credentials page:

mbed Device Connector (Beta)

Security Credentials

.My environment If you want to securely connect a new device to Device Connector, you will need to get a certificate and a private
key to configure your device. You can get your device security credentials here by clicking the button.

1L My devices

— In the root directory of the project open security.h file and edit replacing it with the text taken from
the page which will open

NAVNET siLica

Project compilation using CLI

— Now all is ready to compile the project, enter
in the mbed-os-sensor-node folder and type:

COMMON_PAL

mbed compile -m NUCLEO_ L476RG -t GCC_ARM

— At the end of the compilation you will have
a screen like this image

- S BUILDY NLU:

— The firmware will be created at:

BUILD\NUCLEO_L476RG\GCC_ARM\mbed-o0s-sensor-node.bin

— Copy the binary file into the mass-storage of the board. Once it is copied the demo will start

NAVNET

From the mbed Device Connector click on Dashboard

Check whether your device is connected

mbed ector (Beta)

Dashboard

. My environment My devices

k-l

i

My devices T T

Connected devices

Security credentials

Device Connector @
API Console

Connected devices

+ My applications

Access keys

Device Connector

|\ IR

17 of 10000 per hour

Transactions

My applications

Oof2

Access keys

NAVNET siLica

https://connector.mbed.com/

Click on API Console and then to Endpoint directory lookups

API Console

My environment

Dashboard

L1 My devices
Connected devices

Security credentials

Device Connector

My applications

A 0 -

Access keys

Web applications interact with mbed Device Server (mbed DS) using a set of RESTful Web interfaces over HTTP. AP|
Console lets you simulate your application requests against mbed Device Connector REST APIL.

The REST API URL for all requests is https://api.connector.mbed.com

Endpoint directory lookups v

Traffic limits v
Subscriptions v
M A REST APl documentation

NAVNET siLica

Click on GET Endpoint’s resource representation

S My environment Web applications interact with mbed Device Server (mbed DS) using a set of RESTful Web interfaces over HTTP. API
Dashboard Console lets you simulate your application reguests against mbed Device Connector REST API.
The REST API URL for all requests is https://api.connector.mbed.com
L1 My devices o
Endpoint directory lookups A
Connected devices
Security credentials _ f i i
a3l /endpoints List all endpoints
Device Connector GET /endpoints/{endpoint-name} List endpoint's resource metainformation

API Console
Efendpoints/{endpoint—name}/{res@ Endpoint's resource representation

My applications

ol /endpoints/{endpoint-namel/{resource-path} Post for endpoint's resource
fendpoints/{endpoint-name}/{resource-path} Put for endpoint's resource
plElaEl /endpoints/{endpoint-name}/{resource-path} Delete for endpoint's resource

NAVNET siLica

From the GET form you have to Se|eCt /endpoints/{endpoint-name}/{resource-path} Endpoint's resource representation
— your endpoint Request

— the resource you want read, in this case Contentypes and headers | Execued request
/3200/0/5501 o

Then click on TEST API button -
endpoint Endpoint name uid

Parameter Value Description

s ———
o "
resource-path L /3200/0/5501 ~ ’ Resource-path string
o T —
@ ralse
Optional. Default: false
cacheOnly . boolean
OTrue True, the response will come only from cache
Optional. Default: false
O False True, not waiting for response and no response is
noResp expected. Creates CoAP Non-Confirmable requests boolean
OTrue
False, response is expected and CoAP request is
confirmable.

Note about asynchronous calls
The endpoint's response arrives in the notification channel. Notifications are delivered as PUT messages to the
HTTP server defined by the client with a subscription server message. An HTTP request returns immediately

with an async-response-id that is used to match the response

=

NAVNE I siLica

— You will read the response decoded:

Response

Response body ‘ Response headers ‘ Response codes | 202 : Accepted

"async-response—id": "565831977#cabel265-7390-4d4a-a%56—cc7b050678fhE]
b
< >
Waiting for asynchronous response...

Asynchronous response received in the notification channel

{
"id"™: "565831977#cabel265-7350-4d4a-a956—cc7b050678fb@1ce3dbbl-4a6a—-4k
"status": 200,
"paylocad": "MTQz",
"ct": "text/plain”,
"max—-age": 0

}

< >
Basetd4 decoded pavyload :

NAVNET siLica

— The resourcelD for read the sensor value has id 5700. So if you want read the actual
temperature from the endpointl, first sensor, the command to read it will be:

GET Endpoint1/3303/0/5700

— From the programming perspective we need modify the class ButtonResource in main.cpp:
— From the constructor of the resource:

— Create the ObjectID with the metod: M2MiInterfaceFactory::create object
— Create the ResourcelD with the metod:

M2MinterfaceFactory:.create_dynamic_resource, this resource is a float value
— From the handler metod:

— Get the right resource ID from the metod: M2MObjectinstance::resource
— Insert in the buffer the temperature value taken from HTS211:: ReadTemp() function

— Compile, upload and check from the mbed Device Connector

NAVNET

From the class ButtonResource in main.cpp:
— From the constructor of the resource ButtonResource(): counter(0) { :
— Create the ObjectID with the metod: M2MiInterfaceFactory:.create object
btn_object = M2MiInterfaceFactory::create_object("3303");
— Create the ResourcelD with the metod:
M2MinterfaceFactory:.create_dynamic_resource
M2MResource* btn_res = btn_inst->create_dynamic_resource("5700",
"Temperature", M2MResourcelnstance::FLOAT, true /* observable */);
— From the handler metod void handle_button_click():

— Get the right resource ID from the metod: M2MObjectinstance::resource
M2MResource* res = inst->resource("5700");

— Insert in the buffer the temperature value taken from HTS211:: ReadTemp module
int size = sprintf(buffer, "%f", hts221.ReadTemp());

NAVNET

04.07.2017 NAVNETsiica 36

