
ARM mbed with us
Hands On – Getting to the Cloud

What is mbed Device Connector?

mbed Device Connector

 mbed Device Connector is a service that lets you to provision and connect Internet of Things

(IoT) devices to the cloud

 This service provides:

 Secure end to end communication with the client SSL/TLS

 Access to the resources shared from the client by web API

mbed Desktop Tools

ARM mbed Desktop Tools

mbed CLI
 Common interface across multiple compilers

 Focused on ease of use, reproducibility

 Open source project : https://github.com/ARMmbed/mbed-cli

 Read the guide: https://github.com/ARMmbed/mbed-

cli/blob/master/README.md

Greentea
 mbed OS test framework

 Easy to execute tests on mbed Enabled devices

https://github.com/ARMmbed/mbed-cli
https://github.com/ARMmbed/mbed-cli/blob/master/README.md

mbed CLI

Command-line tool (Windows, Mac and Linux)

Create or import applications

Add/remove/update libraries

Build apps & libraries

Launch automated tests

Generate IDE projects

Publish code directly to mbed.org, github, others
 No separate registry. Simplified dependency model.

https://github.com/ARMmbed/mbed-cli

Invoked using “mbed” command

Compatible with mbed 2.0

(classic) and mbed OS 5.0

programs

C:\>mbed compile

Building project mbed_blinky

Compile: main.cpp

Link: mbed_blinky

.

.

.

https://github.com/ARMmbed/mbed-cli

mbed OS

RTOS

mbed OS Threads

• Priorities

• -3 ... 0 ... +3

• osPriorityIdle ... osPriorityRealtime

• Stack

• Dynamic allocation or user provided

• Signals

• Thread::signal_set(int32_t)

• Thread::signal_clear(int32_t)

• Delay

• signal_wait(), wait(), yeild()

and

mbed OS Syncronization

• Synchronize access to shared resources

• Mutex cannot be used from interrupt

context!

• Mutex default timeout is osWaitForever

• Mutex::lock(uint32_t ms)

• Mutex::unlock()

• Semaphore default timeout is osWaitForever

• Semaphore::wait(uint32_t ms)

• Semaphore::release()

and

mbed OS Messages

• Queue is used for storing pointers to data

• Queue<T, size>

• Queue::put(T *)

• Queue::get(osWaitForever)

• MemoryPool is used for data storage

• MemoryPool<T, size>

• MemoryPool::alloc() / calloc()

• MemoryPool::free()

• Mail

• Mail<T, size>

• Managed Queue and MemoryPool

and

mbed OS

events

mbed OS Callback

• Flexible function pointer

• Object and member function

• Any combination of return types and up to

5 parameters

• C functions
and

mbed OS EventQueue

 Storage for many events

 Events in an EventQueue are not pre-

emptive

 The queue is elastic until it runs out of

memory though (plays catchup)

 RTOS aware – can have multiple queues at

different priorities

and

mbed OS Event

 A Callback that is attached to an EventQueue

 Has attributes such as

 Event::delay(int) – ms before dispatch

 Event::period(int) – dispatch repetedly

and

Protocols and

Standards

Architecture – 2 distinct domains

LWM2M version 1.0 architecture

04.07.2017 17

OMA Lightweight M2M

 LWM2M is a Device Management protocol optimized for IoT devices

 Manage IoT devices remotely, provision security credentials, and update over-the-air

 Standard protocols is the key in preventing vendor lock-in

 Vendor lock-in -a customer dependent on a vendor for products and services, unable to

use another vendor without substantial switching costs

 ARM is an active member in the OMA standard body activities

 ARM client and server implementation are standard compliant

 ARM participate in the on-going Test Fests computability activities

04.07.2017 18

Generic information for LWM2M

19

 Hierarcial data structure

 {object ID}/{object instance

ID}/{Resource ID}/{Resource instance

ID}

 Resource instance level can be also

omitted if not needed, which is the

most common case

 {object ID}/{object instance ID}

/{Resource ID}

 In ”human” –what is it / which instance

of these? / what is the value of it

 3303/0/5602

 In ”human”:temp sensor / 1st instance

/ max observed value

Example: IPSO Temperature object (/3333/0/5xxx)

Supported operations (LWM2M RESTful API)

High-level message pattern hiding details of

networking protocols

 Registration interface

 Informs server about “existence” and

supported functionalities (“I’m here, alive for 30

seconds, have temp sensor”)

 Device management & service enablement

interface

 Ability to access object instances and

resources

 Information reporting interface

 Subscribe/publish interaction for observing

changes in resources

Hands-On

Our project

 Our project will connect the Sensor Board to the mbed Device Connector via a MESH network

 Initially we’ll send a counter to mbed Device Connector and will be able to access to the value

from a web browser

 In the next step we will modify the sources in order to send the temperature value coming

from the ST HTS221 sensor

Network Topology

 The Sensor Node is a node of a MESH network

 Part of the network is an edge router which is connected to the cloud

 The connection from the Sensor Node to the EDGE Router (ST board NUCLEO_F429ZI) is

6LoWPAN sub-ghz wireless

 The EDGE Router is connected on internet via Ethernet cable

 The user can browse the mbed Device Connector website to access to the data of the nodes

Build the project (1/4)

In the first part of the demo we will use the CLI (Command Line Interface)

 Open the Bash console in the folder where you want download the project

 Press the right mouse button and select Git Bash Here

 Unzip the project from the mbed-os-sensor-node.zip file

 It will require few minutes, meanwhile start to setup

your PC:

 Connect the board to the PC

 Install manually the drivers provided from

the STSW-LINK009 zip file

 Driver for ST-Link v2 (ST-Link Debug)

 Driver for Virtual Com Port (unknown device)

Build the project (2/4)

 Setup the MAC address for the 6LoWPAN:

 in the root directory of the project open the setting project file: mbed_app.json

 you have to modify the “spirit1.mac-address” parameter. For the last three bytes

substitute them with your birth date (this is to sure you have a unique MAC for the

board in the demo network)

For example:

"spirit1.mac-address": "{0x7, 0x6, 0x5, 0x4, 0x3, MONTH, DAY, YEAR}“

with “Feb/16/1980” will be:

"spirit1.mac-address": "{0x7, 0x6, 0x5, 0x4, 0x3, 0x02, 0x16, 0x80}"

Build the project (3/4)

Download from the ARM side the device certificate

 Login into your mbed Device Connector page

 Go to mbed Device Connector at the Security Credentials page:

 In the root directory of the project open security.h file and edit replacing it with the text taken from

the page which will open

Build the project (4/4)

Project compilation using CLI

 Now all is ready to compile the project, enter

in the mbed-os-sensor-node folder and type:

mbed compile -m NUCLEO_L476RG -t GCC_ARM

 At the end of the compilation you will have

a screen like this image

 The firmware will be created at:

BUILD\NUCLEO_L476RG\GCC_ARM\mbed-os-sensor-node.bin

 Copy the binary file into the mass-storage of the board. Once it is copied the demo will start

Access to the resource (1/5)

 From the mbed Device Connector click on Dashboard

 Check whether your device is connected

https://connector.mbed.com/

Access to the resource (2/5)

 Click on API Console and then to Endpoint directory lookups

Access to the resource (3/5)

 Click on GET Endpoint’s resource representation

Access to the resource (4/5)

 From the GET form you have to select:

 your endpoint

 the resource you want read, in this case

/3200/0/5501

 Then click on TEST API button

Access to the resource (5/5)

 You will read the response decoded:

Hands on: Send the temperature

 The resourceID for read the sensor value has id 5700. So if you want read the actual

temperature from the endpoint1, first sensor, the command to read it will be:

GET Endpoint1/3303/0/5700

 From the programming perspective we need modify the class ButtonResource in main.cpp:

 From the constructor of the resource:

 Create the ObjectID with the metod: M2MInterfaceFactory::create_object

 Create the ResourceID with the metod:

M2MInterfaceFactory::create_dynamic_resource, this resource is a float value

 From the handler metod:

 Get the right resource ID from the metod: M2MObjectInstance::resource

 Insert in the buffer the temperature value taken from HTS211:: ReadTemp() function

 Compile, upload and check from the mbed Device Connector

Hands on: solution

 From the class ButtonResource in main.cpp:

 From the constructor of the resource ButtonResource(): counter(0) { :

 Create the ObjectID with the metod: M2MInterfaceFactory::create_object

btn_object = M2MInterfaceFactory::create_object("3303");

 Create the ResourceID with the metod:

M2MInterfaceFactory::create_dynamic_resource

M2MResource* btn_res = btn_inst->create_dynamic_resource("5700",

"Temperature", M2MResourceInstance::FLOAT, true /* observable */);

 From the handler metod void handle_button_click():

 Get the right resource ID from the metod: M2MObjectInstance::resource

M2MResource* res = inst->resource("5700");

 Insert in the buffer the temperature value taken from HTS211:: ReadTemp module

int size = sprintf(buffer, "%f", hts221.ReadTemp());

04.07.2017

Thank you!

36

