
ARM mbed with us
Debugging and Tracing

Summary

 We are going to explain how to debug – trace the Sensor Node project

 You will learn two way of debugging – tracing :

1. The embedded mbed OS tracing

2. A classic way with an IDE: uVision 5

 Prerequisites:

 Driver en.stsw-link009.zip file

 mbed CLI and uVision 5 installed

Debugging

 Embedded mbed OS tracing: debugging with printf calls

 The simplest way to debug your code is to augment your

code with log statements, which can be observed from your

computer

 It requires to add trace functions and enable defines to

obtain more information about what is going on

 Debugging from an IDE: uVision 5, standard ICE tool

 you can do things such as set breakpoints, set watchpoints,

view registers, view disassembly, browse memory and

examine the callstack.

 Keil uVision natively supports debugging mbed OS

applications. mbed also supports debugging using any IDE

that supports GDB.

Setup

 Installing drivers:

 Connect the Sensor Node to the PC

 Install manually the drivers provided from

the STSW-LINK009 zip file

 Driver for ST-Link v2 (ST-Link Debug)

 Driver for VCom Port (unknown device)

mbed-trace 1/6

 mbed-trace is a library for tracing via serial line:

 It's a light, simple and general tracing solution for mbed devices

 The memory space required by the library is allocated at the initialization only once (see

mbed_trace_init function)

 The trace function uses stdout as the default output target : it goes directly to serial port

when initialized

 A trace method call produces a single line containing <level>, <group> and <message>

where <level>, <group> and <message> are module or common module defines

 The solution is not Interrupt safe and it is not Thread safe by default (see

mbed_trace_mutex_wait_function_set/mbed_trace_mutex_release_function_set

functions)

 Tracing may affect the timing response of the system

mbed-trace 2/6

 Format of the mbed-trace messages:

[DBG][abc]: This is a debug message from module abc<cr><lf>

[INFO][br]: Hi there.<cr><lf>

[WARN][br]: Oh no, br warning occurs!<cr><lf>

[ERR][abc]: Something goes wrong in module abc<cr><lf>

 The <level> "DBG", "INFO", "WARN", "ERR", specify the level of information that gets included in

debug log. It is the type and amount of information that is logged for different events.

 tr<level> macros: tr_debug, tr_info, tr_warning, tr_error

 In every source module .c/.cpp where trace is needed a TRACE_GROUP must be defined. It is a

1-4 characters long char-array.

 The messages are assembled with sprintf implementation (see mbed_trace_print_function_set

function).

mbed-trace 3/6

 mbed_app.json is the main file in the mbed project where you can edit your project in order to

compile it in different ways. Example:

 Adding macros you can insert defines in the compilation

 You can enable tracing debug

 To enable trace for tracing:

 Add the feature COMMON_PAL into the build via mbed_app.json in the section

target_overrides:

"target_overrides": {

"*": {

"target.features_add": ["NANOSTACK", "LOWPAN_ROUTER", "COMMON_PAL"],

mbed-trace 4/6

 Set MBED-TRACE-ENABLE to 1 or true:

{

"target_overrides": {

"*": {

"target.features_add": ["COMMON_PAL"],

"mbed-trace.enable": 1

}

}

}

 Hands on:

 Change the mbed_app.json file and

compile the project in order to have

the trace enabled

 Upload the firmware and use Tera-term to

see the tracing debug (baud: 115200, 8N1)

mbed-trace 5/6

 The trace library is initialized in the main function

 You can set the verbosity of the debug by the function:

mbed_trace_config_set(TRACE_MODE_COLOR | TRACE_ACTIVE_LEVEL_INFO | TRACE_CARRIAGE_RETURN);

 Where:

 TRACE_ACTIVE_LEVEL_ALL or TRACE_ACTIVE_LEVEL_DEBUG: to activate all trace levels
 TRACE_ACTIVE_LEVEL_INFO, TRACE_ACTIVE_LEVEL_WARN, TRACE_ACTIVE_LEVEL_ERROR,

TRACE_ACTIVE_LEVEL_CMD: different levels of trace priorities

 TRACE_LEVEL_NONE: no trace at all

 Hands on:

 change the level of the trace and test it on the board

 Save the tracing on file using Putty

mbed-trace 6/6

 Printf function is time consuming. In some modules the time can be critical and the debug

enabled may alter the right functionality of the demo

 Sometime you don’t want some “group” trace messages printed. Using the define

MBED_TRACE_MAX_LEVEL you can choose the verbosity in a specific module. To silence the trace in

some specific module create the define:

#define MBED_TRACE_MAX_LEVEL 0

 This define must be created before the line #include “mbed_trace.h”

 Hands on:

 disable the SPIRIT group trace messages adding the definition in the module:

easy-connect/stm-spirit1-rf-driver/source/NanostackRfPhySpirit1.cpp

 Check the SPIRIT group messages are not printed

Debug by macros

 Some debug can be enabled via macros written in the mbed_app.json file

 For example you can enable the debug of the TLS (Transport Layer Security) protocol:

 TLS protocol is composed by initial frames exchanged from the node and the device connector in order to start

a secure connection

 From the mbed_app.json add these macros:

"macros": [...

“MBEDTLS_DEBUG_C=1",

"ENABLE_MBED_CLIENT_MBED_TLS_DEBUGS=1"],

 From the file "mbedtls_mbed_client_config.h" comment the line:

#undef MBEDTLS_DEBUG_C

 Note: mbedtls_mbed_client_config.h file could interfere with the macros defined by mbed_app.json. If you define macros

check if this file disable your macro.

 hands on:

 Compile the project enabling the debug of the TLS communication and save it in a log

 Advanced: find where the macros affect the code

Debug by macros - details

 The macros defined previously affects the module "mbed-client/mbed-client-mbed-

tls/source/m2mconnectionsecuritypimpl.cpp enabling the define:

//Comment out following define to enable tracing from mbedtls

//#define ENABLE_MBED_CLIENT_MBED_TLS_DEBUGS

#ifdef ENABLE_MBED_CLIENT_MBED_TLS_DEBUGS

 The other macro affects the module mbed-os/features/mbedtls/inc/mbedtls/debug.h

#if defined(MBEDTLS_DEBUG_C)

#define MBEDTLS_DEBUG_STRIP_PARENS(...) __VA_ARGS__

#define MBEDTLS_SSL_DEBUG_MSG(level, args) \

mbed_tls_debug_print_msg(ssl, level, __FILE__, __LINE__, \

...

 Where MBEDTLS_SSL_DEBUG_MSG is used in the module

mbed-os/features/mbedtls/src/ssl_tls.c responsable for the TLS communication

uVision 5 (1/2)

 mbed CLI permits to export the project to use on different IDE using the command:

mbed export -i uvision5

 The IDE is the easiest way to debug the code:

1. Launch uVision 5

2. Open the project clicking on “Project → Open Project...” and select the

mbed-os-sensor-node.uvprojx file project

3. Build the project clicking on ”Project → Build target”

4. Now you can debug clicking on “Debug → Start/Stop Debug Session“

uVision 5 (2/2)

 Now you can debug the board with the standard debugging interface

04.07.2017

Thank you!

15

