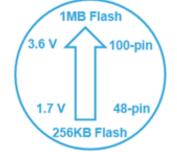
E.Marinoni – v 1.0 October 2018

STM32WB Series MCU with Built-in BLE 5 and IEEE 802.15.4

Open 2.4 GHz radio Multi-protocol


Dual-core / Full control
Ultra-low-power
M4 and M0+

IoT Protection ready

Massive integration Cost saving

A large offer

Advanced RF tool, Energy control with C code generation

No matter what!

- BLE 5.0 radio
- 2x faster speed with 2Mbps capable mode
- Extend network coverage with BLE Mesh

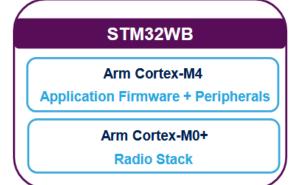
- Last IEEE 802.15.4 standard ready
- OpenThread
- BLE and OpenThread in Static and Dynamic concurrent mode
- Proprietary protocol capable (BLE like or 802.15.4)
- Best-in-class RF with up to +6dBm output power and 102 dB link budget
- Energy sensitive application with only 3.8mA in RX and 5.5mA in TX (@ 0dBm)
- BOM cost reduction thanks to Integrated balun

Simplicity of development

2 independent cores for real-time execution

Mono-core

CPU-x


Application Firmware

Peripherals

Radio stack

Drawbacks

- Time sharing
- Longer processing time Greedy current consumption
- Need companion MCU (increased cost)

Benefits

- SOC solution (1 single die)
- Full flexibility Easy development User experience
- · Increase battery life
- · All-in-1 solution cost saving
- · Speed up time to market

KEY FEATURES

- 2 independent cores for real time execution
- Ultra-low-power consumption
 - 50 μA/MHz Active mode (at 3.0V)
 - 1.8 μA Stop mode (Radio in standby + 256KB RAM)
 - < 50 nA Shutdown mode
- Peripherals
 - 2xI²C, 1xUSART, 1xLP-UART, 2xSPI, 1x USB 2.0 FS device supporting Battery Charging Detection, 1xSAI, Q-SPI (XIP), 6x 16-bit timer (including LPWM and low-power one)
- 1.71 to 3.6V voltage range (DC/DC, LDO)
- -40°C to +105°C temperature range

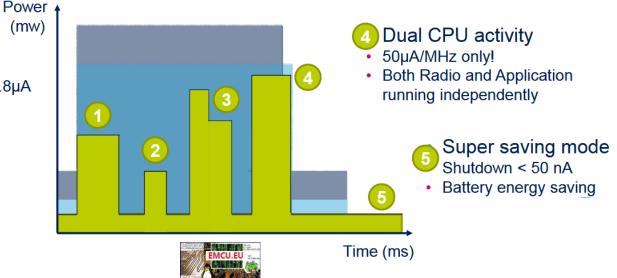
Security PCROP, PKA, TRNG AES 256-bit, CKS Arm® Cortex®-M4 MPU + FPU + DSP Inst. @ 64 MHz

ART Accelerator™ Up to 1MB Flash Up to 256KB SRAM

LCD 8x40

ADC 12-bit 2x Comp Temp sensor Cap. Touch USB 2.0 FS Crystal-less SPI, I²C LP-UART SAI. Quad-SPI Cortex-M0+ Core
@ 32 MHz
2.4 GHz Radio
BLE 5
802.15.4
Concurrent mode

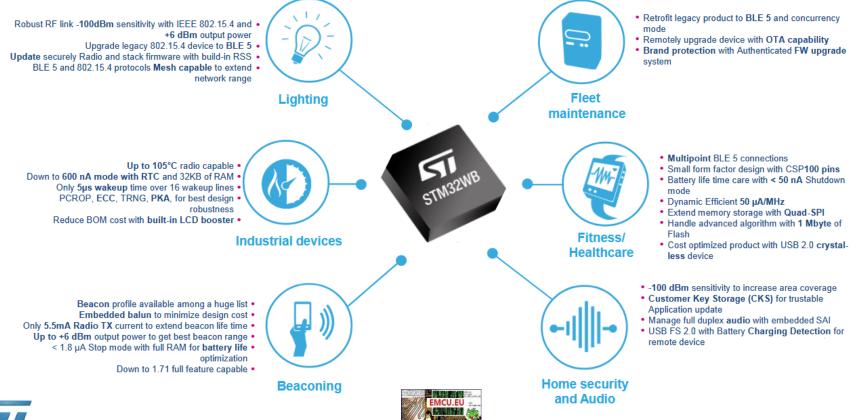
Benefit of Dual Cores processing


- 1 Independent Radio activity:
 - Uploading data to mesh network or smartphone
 - OTA of Radio protocol stack or application FW
 - Running on arm CM0+

- Main application activity:
 - Computing data (sensor fusion ...)
 - Flexible arm CM4 CPU speed up to 64 MHz
 - Batch Acquisition Mode (BAM) with CPU and Flash turned off

- (mw)

 Energy saving mode
- RAM + RTC running @ 1.8µA
- Fast wake up @ 5µs


- Competitor A
- Competitor B

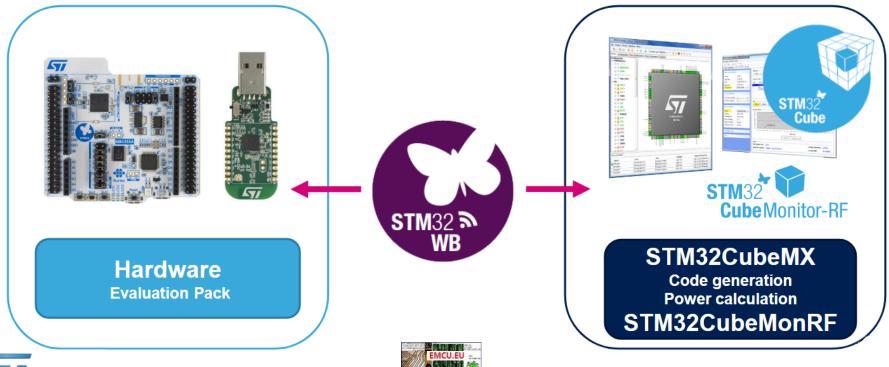
All in one MCU - Full flexibility control

IoT Protection Ready

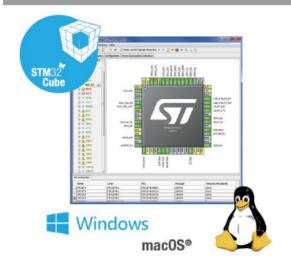
Attacks	Attacks description	STM32WB Countermeasures
Non Invasive Attacks	Environment modification Temperature Voltage Clock Fault injection (glitches) Exploit debug features Side channel, power Analysis,	Temperature sensor Power supply integrity monitor Clock security system Tamper pads Memory ECC, Parity check RTC alarm, registers, SRAM mass erase JTAG Read out protection BOOT from Flash only
Software Attacks	Low Authentication / Encryption Extract keys Exploitation of applicative test features Malware / Virus Replay, privilege escalation	Customer Key Storage (CKS) RNG, Crypto accelerator, CRC Write memory protection Read Out memory protection Memory Protection Unit (MPU) Root Secure Service (RSS) Secure Firmware Update (SFU) Proprietary Code Read-Out Protection (PCROP) 96-bit ID

STM32WB - A large offer

Bluetooth 5, Thread, ZigBee 3.0 and proprietary protocol capable


Flash memory / RAM size (bytes) 1 M / 256 K STM32WB55CG STM32WB55RG STM32WB55VG 512 K / 256 K STM32WB55CE STM32WB55RE STM32WB55VE STM32 >> WB STM32WB55CC STM32WB55RC STM32WB55VC 256 K / 128 K Pin count 48-pin UQFN 68-pin VQFN 100-pin WLCSP (0.5 mm pitch) (0.4 mm pitch) (0.4 mm pitch)

From 1.71 to 3.6V and from -40°C to +105°C!



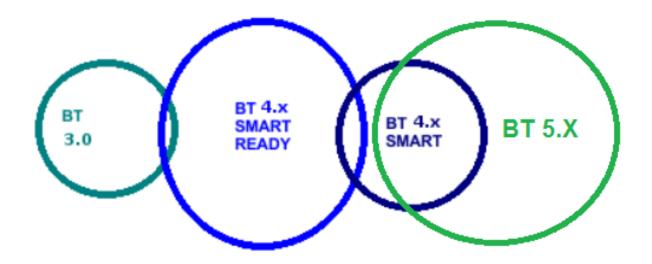
Prototyping made as easy

A complete flow, from configuration up to monitoring

STM32CubeMX
Configure & Generate Code

Partners IDEs
Compile and Debug

STM32CubeMonRF Monitor


extra information

BlueTooth - Technology

Click below to see the STM32WB presentation

For more info see below

STM32

STM32

